
CSE 451: Operating Systems
Spring 2020

Module -1
(Instruction Level) Parallelism

Today: Overview
• Nothing we’re doing will directly be part of anything graded

• I’m mainly hoping it’s interesting ...
• and vaguely relevant to some concepts/mechanism we’ll see later...
• and while we’ll be mainly talking about specifics, some part of the material is

very general

Today: Overview

Instruction Set Architecture (ISA) [CSE 351]
OS exe exe [CSE 451]

compiler compiler [CSE 401]compiler

OS source[CSE 451] app
source

app
source [CSE many]

Software

Hardware

[CSE 469]Machine Organization

Boolean circuits [CSE 369]

[Today]

Terminology

• Parallelism
• Doing more than one thing at a time

• Usually for performance reasons
• Multiple hardware resources in use at once

• Concurrency
• Doing more than one than thing during the same time period

• Can be for performance
• Avoid synchronization
• Increase utilization of (expensive) hardware resources

• Often to simplify software implementation
• May or may not involve multiple hardware resources

A Ridiculously Simplified History of System
Software
• Era 0: There’s one compute in the world, it’s in one location, and it’s

running one program at a time (or maybe just one program, period).
• 1: They’re handy, so more computers are built. Each runs one

program at a time. They’re incredibly expensive, so there are still
only a small number of them in the world.

• 2: Computers have CPUs and I/O devices. Because they’re expensive,
people want to use both at once. Individual programs try to
parallelize their I/O and computation.

• 3: It’s hard to parallelize individual apps. OS’s are written that overlap
loading into memory the next program to run with running the
current program.

A Ridiculously Simplified History of Computing

• 4: It’s hard to parallelize individual apps. OS’s allow many programs
to be loaded and run concurrently, so that computation of one can be
overlapped with I/O of another. This allows programs to be written
using sequential semantics (each run sequentially, not in parallel), but
the system achieves parallel execution (if you think of all the
programs together as one execution)

• 5: If you want an individual program to run faster, the programmer
has to write a parallel or concurrent program.

• 6: Parallelizing compilers, multicore processors, networks and
distributed systems, the cloud...

What Was Happening With Hardware?

• Era 0: Sequential execution of hardware instructions

lw x3, 0(x2)
lw x4, 8(x2)
add x3, x3, x4
sw x3, 0(x2)
...

0: lw x3, 0(x2)
1: lw x4, 8(x2)
2: add x3, x3, x4
3: sw x3, 0(x2)

...

Program Source Program Execution

cycle
clock signal

Single Cycle Execution

Datapath
lw x3, 0(x2)
lw x4, 8(x2)
add x3, x3, x4
sw x3, 0(x2)

0:

Hardware Clock CycleCycle

Datapath
lw x4, 8(x2)
add x3, x3, x4
sw x3, 0(x2)

1:

Datapathadd x3, x3, x4
sw x3, 0(x2)2:

Datapathsw x3, 0(x2)3:

Single Cycle Datapath (RISC)

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

add x3, x3, x4

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit (ALU)

Memory
Read/Write

Register
Write
Back

Fetch instruction Get contents
of x3 and x4

Add contents
of x3 and x4

Pass through
add result Write to x3

Making the CPU faster

• Shorten the clock cycle
• Basically, keep the circuit you have but make it operate faster

• make the “gates” (basic components of the circuit) smaller, and/or
• increase the voltage

• increase the heat...

• Execute more than one instruction at a time
• ILP – instruction level parallelism
• IPC – average number of instructions completed per cycle

IPL – Artist’s Rendition
(Pretty Much No Detail Here is Accurate!)

Datapath
lw x3, 0(x2)
lw x4, 8(x2)
add x3, x3, x4
sw x3, 0(x2)

0:

Hardware Clock CycleCycle

Datapath
add x3, x3, x4
sw x3, 0(x2)1:

Datapathsw x3, 0(x2)2:

Datapathsw x3, 0(x2)3: lw x3, 0(x2)
(completes)

How Can We Implement ILP?

• The simplest approach is pipelining

vs.

Not Pipelining

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

lw x3, 0(x2)

Cycle time
lw x4, 8(x2)
add x3, x3, x4
sw x3, 0(x2)

(5-stage) Pipelining

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

Cycle time

lw x4, 8(x2)
add x3, x3, x4
sw x3, 0(x2)

lw x3, 0(x2)

(5-stage) Pipelining

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

Cycle time

add x3, x3, x4
sw x3, 0(x2)

lw x3, 0(x2)lw x4, 8(x2)

(5-stage) Pipelining

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

Cycle time

sw x3, 0(x2)

lw x3, 0(x2)lw x4, 8(x2)add x3, x3, x4

(5-stage) Pipelining

Instruction
Fetch

PC +4

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

lw x3, 0(x2)lw x4, 8(x2)add x3, x3, x4sw x3, 0(x2)

Cycle time

Pipelining

• Idealization
• Reduce cycle time (compared to single cycle implementation) by a factor

equal to the number of stages
• Still inject one instruction per cycle into the data path
• Ideally, one instruction per cycle leaves the data path once it fills

• Why is this an idealization, and not reality?
• Probably can’t divide data path into exactly equal-time stages
• Hazards

Pipelining Constraints

• Pipelining is a change to the implementation of the ISA
• The ISA itself remains unchanged
• The ISA defines the effect of an instruction sequence to be what

results from a single cycle implementation – executing each
instruction to completion before beginning the next one

• The pipeline executes multiple instructions at once
• But you can’t just execute the instructions in any old order and expect

to get the right result
• Which orderings are correct, and which incorrect?

Dependences - RAW

• Dependences restrict the correct orderings
• There are three kinds
• 1) RAW – read-after-write (aka data or flow or true dependence)

lw x3, 0(x2)
add x3, x3, x4

• The add instruction should read the value produce by the lw instruction
• When the instructions are executed one at a time, no problem
• When the instructions are executed at the same time, in the general case the
add may read x3 before the lw writes it

Dependences - WAR

• 2) WAR – write-after-read (aka anti-dependence)
add x3, x3, x4
lw x3, 0(x2)

• The add instruction should read the value of x3 before thelw instruction
writes it

• 2) WAW – write-after-write (aka output dependence)
add x3, x3, x4
lw x3, 0(x2)

• The value left in x3 should be the one written by the lw

(Register) Dependences and Pipelining: WAW

• Register writes occur in the final stage (write-back). Instruction pass through that stage in execution order.
• So, the pipeline naturally respects WAW ordering contraints

Instruction
Fetch

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

Write

(Register) Dependences and Pipelining: WAR

• The first instruction reads during its second stage
• The instruction that writes trails it in the pipeline and doesn’t write until it reaches stage 5
• So, WAR dependences are always respected by the pipeline

Instruction
Fetch

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

Write
(later instruction)

Read
(earlier instruction)

(Register) Dependences and Pipelining: RAW

• Trouble / No Trouble
• We call the trouble a hazard – we can get the wrong result if we don’t do something special
• If the reading instruction is one of the next three instructions after the writing instruction, it will read an

incorrect value
• It gets the value that was in the register before the writing instruction executed

Instruction
Fetch

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

Write
(earlier instruction)

Read
(later instruction)

add x3, x3, x4add x10, x3, x5add x10, x3, x5add x10, x3, x5add x10, x3, x5

add x3, x3, x4
...

add x10, x3, x5

Resolving the Hazard

• There are options...
• 1) Insert bubbles statically

• Make it the programmer’s (compiler’s) problem
• The ISA says “don’t do that!”

• If your code has an instruction that writes a register and any of the next three
instructions read the register, the reading instruction gets the old value

• Compiler must insert “bubbles” to separate producer and consumer of value,
if it can’t find anything more useful to do

• A bubble is a NOP (an instruction that doesn’t change any values)

Resolving the RAW Hazard

• There are options...
• 1) Insert bubbles statically

• Make it the programmer’s (compiler’s) problem
• The ISA says “don’t do that!”

• If your code has an instruction that writes a register and any of the next three instructions
read the register, the reading instruction gets the old value

• Compiler must insert “bubbles” to separate producer and consumer of value, if it
can’t find anything more useful to do

• A bubble is a NOP (an instruction that doesn’t change any values)

• Pros: simple (for the hardware, and not too hard for the software)
• Cons: code is longer (due to NOPs); may have to insert bubbles before branching

because you’re not sure exactly where you’re branching to (so execution is slower)

Resolving the RAW Hazard

• 2) Insert bubbles dynamically
• Make it the hardware’s problem
• The data path notices that the instruction consuming a value follows to

closely the instruction that produces that value and stalls – injects bubbles
(NOPs) into the pipeline to achieve the required separation

• Pros: stall only when actually necessary
• Cons: more complicated hardware; if the compiler is insensitive to this issue

may have to stall even though the stall could have been avoided by a smarter
compiler

Resolving the RAW Hazard
• 3) Forwarding

• Note that in many cases the value needed is produced before the consuming
instruction absolutely needs it

• The needed value is somewhere in the data path, just not in the register
• “Forward” it from wherever it is downstream to where it’s needed upstream

Instruction
Fetch

Read
Registers

Arithmetic/Logic
Unit

Memory
Read/Write

Register
Write
Back

add x3, x3, x4add x10, x3, x5

Forwarding (cont.)

• Pros:
• Can resolve many RAW hazards without introducing bubbles

• Cons:
• Need more complicated hardware to do the forwarding
• Still need to be able to inject bubbles when forwarding won’t solve the

problem
• For example, lw x3, 0(x2) followed immediately by add x3, x3, x4

There are further complications

• Control hazards
• Suppose we fetch a conditional branch instruction during cycle N
• From what address should we fetch the instruction fetched during cycle N+1

• If the branch isn’t taken, fetch the next instruction in memory (PC+4)
• If the branch is taken, fetch the instruction at the branch target address

• During cycle N+1 we don’t yet know if the branch will be taken
• Solution: guess (speculate)

• Guess the branch won’t be taken and fetch next sequential instruction. If later branch is
taken, convert the mistakenly fetched instructions into NOPs

• Keep a “branch prediction table.” When you fetch a branch at some PC, remember the PC
and what the correct next instruction address is. Next time you fetch that same branch, guess
you’ll do what you did last time

• Implement a more sophisticated branch prediction table
• E.g., branches associated with For loop are taken, taken, taken, ... not taken. Always predicting

taken is better than ever predicting not taken

Current Plan for Next Time

• More about ILP
• Pipelining is too restrictive

• Because instructions can’t pass each other (relative to sequential program
execution order), if an instruction stalls all the instructions behind it must
stall, even if they could in principle make progress with correct results

• Some instructions are “harder” than other and take more time
• E.g., floating point operations vs. integer operations
• Pipeline effectively stalls the faster instructions

• What to do?
• Superscalar architectures

	CSE 451: Operating Systems�Spring 2020�
	Today: Overview
	Today: Overview
	Terminology
	A Ridiculously Simplified History of System Software
	A Ridiculously Simplified History of Computing
	What Was Happening With Hardware?
	Single Cycle Execution
	Single Cycle Datapath (RISC)
	add x3, x3, x4
	Making the CPU faster
	IPL – Artist’s Rendition �(Pretty Much No Detail Here is Accurate!)
	How Can We Implement ILP?
	Not Pipelining
	(5-stage) Pipelining
	(5-stage) Pipelining
	(5-stage) Pipelining
	(5-stage) Pipelining
	Pipelining
	Pipelining Constraints
	Dependences - RAW
	Dependences - WAR
	(Register) Dependences and Pipelining: WAW
	(Register) Dependences and Pipelining: WAR
	(Register) Dependences and Pipelining: RAW
	Resolving the Hazard
	Resolving the RAW Hazard
	Resolving the RAW Hazard
	Resolving the RAW Hazard
	Forwarding (cont.)
	There are further complications
	Current Plan for Next Time

